Docs » Working with the Node Graph » Contexts

Contexts

A Context is a bundle of variables provided to each operation performed by a node. Nodes need
a subset of these variables to tell them which fragment of the scene or image to generate. You
can add your own variables to the graph, to control the behaviour of upstream nodes.

Contexts are central to Gaffer's processing of 2D and 3D data in a graph, as well as its deferred
evaluation engine. Contexts allow nodes to deal with data in small slices rather than as a whole,
and generate exactly what is needed. They are the core of every node operation. Depending on
the data being processed, a typical variable inside a Context is responsible for specifying one
aspect of the scene or image fragment being generated, such as:

Frame number

« Scene location

Image tile

Image channel

Gaffer automatically manages Contexts during processing. These are silently passed upstream,
from node to node as they compute requested data. Certain nodes can also add and modify their
own variables, for use in driving graph behaviour.

There is no single interface in Gaffer for manually controlling and inspecting a Context in its
entirety, but nodes like NameSwitch, Spreadsheet, and Expression can add Context-dependent
behaviour to graphs, and the Python API provides methods for creating and inspecting Contexts.

Nodes and Contexts

In order to provide a background for why Contexts are necessary, we should look at what kind of
workload a node would be up against without them.

Let’s consider a 3D scene. Keeping in mind how scenes are structured, imagine it is filled with
hundreds of thousands of locations. Clearly, not every location can be processed at once. Gaffer
needs a way to divide up the work to compute the locations one at a time.

This is where Contexts come in. In Gaffer, at no point does a node operate on the entire
scene/image. Contexts break the scene/image down into digestible fragments, so each node
only generates the parts that they were told to, while deferring the rest. Each computing thread
has its own Context, so multiple threads may be processing different parts of the scene/image in
parallel, greatly improving efficiency and performance.

Scene Process Result

L C browNoseB801 REN ——p R
L € head®81 REN ————» [
- C_head®@2 REN ——— sl
- C headCapf801 REN —————» QGG
- C_mouthGrill@@l REN —— QeGhGIEr
- C mouthLiner@@l REN ——p el
- L ear@Bl REN ————————» el
- R earf@l REN —————p Qi

gafferBot.scc

Figure A: Contexts allow a scene file to be processed in slices, one location at a time.

Context flow

While scene and image data flows down the graph, Contexts flow upstream.

Computation begins when a node is queried to compute a value for its output plug, by
something such as a dispatcher or an editor in the interface. At the start of the computation,
whatever made the request creates a Context and sets its variables to specify the target
location, set, image tile, channel, etc.

The Context then passes up to any plugs that contribute to the output value. When an input
plug on the queried node is connected to a plug on an upstream node, it pulls on that upstream
plug to retrieve its value. If necessary, the upstream node may need to compute in turn, to

produce the upstream plug’s value. This pull-compute reaction occurs up through the graph until
all required plug values have been calculated to create an output value for the original queried
node.

SceneReader

PathFiltar

Transform

TimeWarp

Context created

PathFiltar

Transform

TimeWarp

SceneReader

PathFiltar

Transform

TimaWarp

Figure B: A visualization of Context and computation flow:

SceneReader

PathFiltar

Transform

TR S

AX

Context passed to
input plug(s)

TimeWarp in p!ug l;:2|u:‘—2‘riE‘l:jJ

input plug(s)
pulled

PathFiltar

Transform

TimeWarp computed plug
values returned

SceneReader

PathFiltar

Transform

TimeWarp out plug computed

1. A suitable Context is created. The node’s output plug is queried. The node begins computation.
2. The node's in plugs are computed. If connected, they pull on connected input piugs, and pass along the Context.
3. A chain reaction of plug value pulling and Context passing ensues.

4. Once the last input plugs in the chain are computed, input plugs begin delivering values to the piugs that pulled
on them.

5. A chain reaction of plug value returning ensues.

6. The out plug is computed.

Some nodes modify the variables inside the Context before they pass it upstream. One example
is a node that simply adds a new variable, like a CollectScenes node, which adds a variable that
contains the name of the current root location being added to the scene. Another example
would be a node that changes a value, such as the TimeWarp node, which can adjust the frame
variable so that the upstream nodes compute for a different part of the frame range.

Context Variables

An individual variable inside a Context is called a Context Variable. Within the graph, Context
Variables are a means of wielding Contexts to drive values, and can be employed to powerful
effect to iterate and optimize results.

All Context Variables reside inside their Contexts, and are assignable. Any Context Variable
present in a node’s Context during processing can have its value expanded in an Expression
node, or string plug with string substitution syntax.

There are a handful of special Context Variables that are worth noting, which we will informally
refer to here as built-in Context Variables.

Built-in Context Variables

Built-in Context Variables are hard-coded variables that scene and image nodes read for
specifying scene and image fragments to generate. These are the variables that allow Contexts
to specify the smallest part of the scene/image at a time. They are declared and assigned values
automatically by the node processes themselves.

For a full list of built-in Context Variables and their purposes, see the Context Variables
reference.

For a scene computation, the most common built-in Context Variables present are:

¢ frame

e scene:path
For an image computation, the most common Context Variables present are:

e frame
e image:tileOrigin

¢ image:channelName

frame and scene:path will most likely be the only built-in Context Variables that you
explicitly reference in plugs.

When Contexts are passed from plug to plug in a scene network, there are two facts you should
remember for scene:path:

« Shader networks: To improve performance, shader networks do not support the use of
scene:path, and consequently you cannot use it in string substitutions. As a workaround,
you can use a CustomAttributes node to generate an attribute that varies with scene:path,
and then have the shader network reference that attribute.

« Globals: When scene globals are computed, the scene:path Context Variable is not present
in the Context, as location paths are not relevant.

Other Context Variables

All other Context Variables must be declared and initialized, either in the graph itself or in the
Gaffer app that’s executing the graph. They can handle all the same value types as plug, such as
string, int, float, vector, matrix, etc. These other Context Variables are often used to pass an
arbitrary variable value upstream.

A Context Variable created at the root of the graph is referred to as a global Context Variable.
Global Context Variables are always passed into all Contexts, regardless of which node is being
executed. They are declared and initialized in the Variables tab of the Settings window (File >
Settings...), and can be overridden in individual networks. For a list of the default global Context
Variable names, see Global Context Variables.

Some nodes create and add Context Variables, such as ContextVariables, Wedge, CollectScenes,
and Collectlmages nodes. They each have at least one string plug that generates a Context
Variable to vary upstream behaviour. For convenience, some of these string plugs have default
variable names, but you can provide your own. For a list of the nodes with default node Context
Variable names, see Node default Context Variables.

Contexts in action

Let’s work through a series of practical examples of wielding Contexts in scene and image
networks. Each of these modify the Context to achieve a result, but all demonstrate the same
principles: Contexts start at the queried node, and flow up the graph to upstream connected

plugs.

Reading a Context Variable with a string plug

ContextVariables

In this most basic example, a ContextVariables node inserts a message string Context Variable
into the Context. Then, through string substitution, the upstream Text node reads the variable
(${message}). When the scene is computed, the geometry displays the value of the variable:

received.

Editor focus and Context flow

Let’s put Context flow into practice, and examine how editor focus can trip you up with regards
to Context flow. This is a very common mistake to make when first learning how to wield
Contexts.

Let’s reuse the above network, which we demonstrated by focusing the editors on the
ContextVariables node. As we mentioned earlier, focusing an editor on a node queries it. Let’s
see what happens when we focus on the Text node, instead.

Graph Editor

ContextVariables

The editors are focused on it, but no geometry is visible. We can quickly tell that the node in fact
did compute, because its location is visible in the Hierarchy View. The Text plug substituted the
message Context Variable with an empty string, because it didn’t exist.

This is because the Text node cannot reach downstream to read message. Contexts start at the
qgueried node, and then move up when computing plugs pull on their inputs. We need the
ContextVariables node to compute before the Text node, so it can insert message into the
Context and pass it up. In the interface, the only way to see the result of message is to query the
ContextVariables node or something downstream of it. Therefore for the purposes of this
network, to see the results of a successful substitution of message, we need to focus the editors
on the ContextVariables node.

Context Variables in expressions

Like any other plug, when an Expression node drives a plug, that plug will pass along its Context
during computation. The expression code can then read the values of the Context Variables with
Python or OSL. For a full list of methods for accessing Context Variables in Python and OSL, see
the Expressions reference.

The Expression node does not support creating or modifying Context Variables.

In this network, we drive the vertical translation of a cube primitive with the frame number. The
frame will produce a different height result when the provided Context contains a different
frame value.

Gaffer File (.14 Layout Execute Help Tools
Viewer o Node Editor
Node Name Cube

Transform

Graph Editor

Hierarchy View

Name

cube

> |11 100 100

When the node calculates its Transform plug, for the y value of its translation, it queries the
Expression node. The Expression node, in turn, calculates the frame number from the Context:

Mode Name Expression Expression

In Python, since accessing Context Variables with dictionary syntax does not allow you to
define a fallback value, your expression could cause errors when the Context Variable is not
defined, which will usually be the case at most nodes of the graph. We therefore recommend
using the context.get() method and providing a fallback value, so the method always
returns a value.

Context Variables and the Random node

Gaffer File Edit Layout Execute Help Tools

Viewer

L

g’

Graph Editor

Duplicate

PathFilter

Node Editor
Node Name Transform

Settings

Hierarchy View

100 100

In this next example, a cube has been duplicated several times, with each copy translated further

to the side. We want to apply a random vertical translation to each cube by adjusting a

Transform node. To do this, we must drive the Transform node’s plug with a Random node, and

the Random node will map a unique value to each of the scene’s paths.

Gaffer File Edit Layout Execute Help Tools

Viewer

Graph Editor

Duplicate
PathFilter

Node Name Random

Settings
Seed 0
Context Entry scene:path
Float Range -1
Base Color
Hue
Saturation

Value

Out Color

Node Editor
Edit Scope |None Node Name Transform
Settings

Space
Translate
Rotate
Scale

Pivot

Hierarchy View

Name
cube
cubel
cube2
cube3
cubed.
cube5

A5
Random §%

Transform ';:’,S- - 3

Here the Random node drives the y-translate of a Transform node filtered to the cubes. Its
Context Entry plug targets scene:path. Set up this way, the Random node derives a random
value between -1 and 1 from the current path in the Context. From there, this random value is
passed to the Transform node, and translates the cube’s height.

Since each location’s path is unique, the randomized values are based on the scene:path
Context Variable, and the Transform node is filtered to every location in the scene, we end up
with per-location random height on each sphere.

% Important

In order to provide random results that can repeatedly match the set of random values to the
locations/tiles in the same order, the Random node’s values are derived from its seed in
conjunction with a Context Variable in its Context Entry plug.

We should note that for this network to function properly, the connected PathFilter node must
filter for every location, so it has a value of *.

Querying results with Contexts

Gaffer File Edit Layout Execute Help Tools

Viewer ! Node Editor

Node Name Transform Transform §

Settings

Graph Editor

Hierarchy View

Duplicate

PathFilter

Lt 100 100

In the example above, we created a plug value that varies across Contexts via scene:path. As
such, you won'’t be able to see the plug’s actual values used during computation. This is because
the Node Editor can only display one plug value at a time, and generally does so using the
graph’s global context. But, it is sometimes essential to know the exact value of a plug given a
particular Context.

You can do this with the Python API, by establishing a temporary Context and then querying the
plug given a specific value of scene:path.

First, let’s try querying the y-translate value for the Transform node from the previous example
in the Python Editor:

print(root["Transform"]["transform"]["translate"]["y"].getValue())

This simply gives us a height passed by the Random node with a blank location, which none of
the cubes actually use. What we need is a statement along the lines of “given the cube at
location X, what height is the transform?” In fact, the following code effectively does that, by
first creating a Context and then querying the plug in it:

context = Gaffer.Context(root.context())
context["“scene:path”] = IECore.InternedStringVectorData(["cube2"])
with context:

print(root["Transform"]["transform"]["translate"]["y"].getValue())

The translate value of the plug matches the cube’s height as seen in the Scene Inspector:

Transform

Selection

| ocation

Transform

Local Matrix

Ll:":al 'f'|'.3 rl-sla'[,_:_. 0.0000 O0.5131 3.0000

Observe that we first established scene:path, which uses the InternedStringVvectorData type,
and that the path itself doesn’t contain a forward slash (/).

Contexts in parallel branches

When two plugs in parallel branches are driven by a shared input plug, their Contexts are not
shared with that input plug. During computation, each branch is processed in isolation. Take, for
example, the following network:

Gaffer File Edit Layout Execute Help Tools
Viewer

Default

(972 143)

apples to <none> <nhone> to oranges

(102 108)

1024 x 256
XY :512-214 RGBA : 0.000 0.000 0.000 0.000 HSV : 0.000 0.000 0.000

Graph Editer

Text Right

ContextVariables_Apples ContextVariables_Oranges

Mode Name Expression Expression @ u;{«

Language Python

apples = context.get("apples™, "<none>™)

oranges = context.get(="oranges®™, T<none>" |

parent [®"Text_Left*] ["text*] - apples + " to " + oranges
parent [*Text_Right*){"text™] - apples + " to " + oranges

The Text plug of both branch’s Text node is driven by a single Expression node. Despite the
expression code making calls to both Context Variables, it only substitutes the one that is
present in the Context in the branch that is currently computing. When the left branch is
computed, only apples is defined, so only it returns its proper string. Conversely, when the right
branch is computing, only oranges is defined, so you only see its string.

The same principle applies when the branches are split at the bottom. In this next image
network, the image is overlaid with author and description text if versionAuthor or
versionDescription Context Variables are defined.

Gaffer File Edit Layout Execute Help Tools

Viewer [ImageWriter_Daily] Viewer [ImageWriter_FilmOut]

RGBA

Default RGBA Default

AUTHOR: Gaffy
DESCRIPTION: New background color

un 1neA 7 1690 v T0RA L un InEA 7 1070 v 1020
Xy:oo RGBA : 0.000 0.013 0.038 0.250 HSV : 0.611 1.000 0.038

RGBA : 0.000 0.013 0.038 0.250 H5V : 0.611 1.000 0.038
Graph Editer

Constant

ContextVariables

ImageWriter_Daily ImageWriter FilmOut

Mode Name Expression Expression

Language

context .get |

= context.get [

When the ImageWriter_DailyOverlay node on the left is executed, the Context Variables are
added to the graph, and Expression node substitutes the text. When the ImageWriter node on
the right is executed, the text is empty, because its branch isn’t connected to the
ContextVariables node.

See also

« Performance Best Practices

« Context Variables reference

