°
DOCSIe-z Read Edit Editsource 7.7 More ™ ‘Search Docs Q‘

Image Engine Departments Projects Workflows Software Blog

Jabuka Terminology

This is an outline of the key terms in Jabuka, and how they apply to the Image Engine pipeline.

Contents [hide]

1 Basicterms
1.1 Entity

1.2 Entity source

1.3 Library

1.4 Location

1.5 Component

1.6 Version

1.7 Publishing

1.8 Asset

1.9 Cine asset

1.10 Copied entity

1.11 Assetinstances and references
1.12 Local and inherited entities
1.13 Localizing

1.14 Bundle

1.15 Bundle render

1.16 Approving bundles

2 Advanced terms
2.1 Sub-bundle

2.2 Input bundle
2.3 Source bundle

3 Seealso

Basic terms

Entity

1/10

An entity is the most fundamental “thing” inside Jabuka. It is a tracked collection of data. Jabuka
preserves each entity's entire version history, including previous file versions, for backup and
archival purposes.

Everything in Jabuka is an entity of one type or another, and, like file types in a filesystem, each type
is intended for a particular use.

Some top-level entity types include:

e Library

o Asset

e« Component
e Show

e Sequence

e Shot

Entity source

A entity source, sometimes referred to simple as a source, is another entity from which an entity
derives some or all of its data. For example, an animator's scene in Maya will typically reference an
asset's modelling_modelGeo component and a rigging_animationRig component when animating
its movement. When the scene is cached and the animationGeo component is published, Jabuka
registers these referenced components as source entities.

Library

Alibrary is an entity that organizes other entities, those entities being related to a particular topic or
use. Think of it like a folder or directory in a file system.

Some examples:

. ‘ Asset library

o Scene library

2/10

« Image sequence library

o Bundle library

Location

b

-
=
-
-
-
-
-
-

L]

Hierarchy levels of 2
ashot.

Alocation is a position in Jabuka's hierarchy. In Jabuka, there are four main levels in the hierarchy:

These levels correspond to the standard show-sequence-shot paradigm. They can be thought of as
levels in a file system path. However, do not confuse them for Jabuka's file system, because its
structure follows a more granular hierarchy scheme.

Component

A component is an entity that tracks a working element of production content. A component stores
one or more content files and metadata values related to them. These are the entities artists work on
and produce.

Components are typically organized by their intended function, into an asset or a shot library.

3/10

Example asset Example cine asset Example FX Example image
componentsin an componentsinacine components (caches) sequence components
asset. asset. in a shot's FX cache in ashot'simage
library. sequence library.
Version

«2 - animationRig v 171

Aversion is an iteration of an entity, most commonly a component. When an existing component is
re-published, a new version of it is registered with Jabuka. A version is the smallest meaningful unit
of artistic output in the pipeline and in an artist's workflow. At any given step of any task, an artist
will be working on a version.

Publishing
-

To publish a component is to register a new version of a component (either an existing one, or from
scratch) and make its data available in the pipeline. Publishing a component increases its version
number by 1. Publishing is how Jabuka keeps track of components: saving files is not sufficient on its
own. Publishing is the most important action in the workflow, and the one artists will be committing
the most often. Every artist is expected to publish what they work on.

Depending on the farm and file system resources the version publishing process requires, it can take
some time for a publish to complete.

Asset

&

An asset in Jabuka is an organizing container for components related to an asset, and represents the
asset as a whole in the pipeline. Assets are in effect just libraries for asset components.

4/10

Cine asset

I#

A cine asset is an organizing container for the constituent content in a 2D layer, primarily plate- and
camera-related components. Itis similar to a regular asset in that it organizes and contains
components. Cine assets are in effect just libraries for cine asset components.

Cine assets were invented at Image Engine to reduce confusion in the workflow and streamline
throughput when dealing with numerous 2D-related components over multiple layers.

For more information on cine assets, see Cine Asset.

Copied entity

A copied entity, or just a copy, has the same meaning as the common filesystem sense of the word
copy: an identical but independent duplicate of an entity. After the copy is made, changes can be
made to both the original entity and the copy with no effect on the other.

A caveat to this is that to reduce disk space use, a copy in Jabuka only actually duplicates the files
from the latest version of an entity, and ignores those from prior versions.

Asset instances and references

B arogon w15

v v
:! A AR = D S B
44 arogon_00 1 v 2 (Instance) I N S5Ld N ce

An asset instance, often shortened to just instance, is a copy of an asset, but instead of containing
copies of the original asset's components, it only contains links to them.

Asset instances propagate assets from the root location of a show to its shots, so they are the most
common type of instance in Image Engine's pipeline. Other entity types can be instanced, but they
are rarer.

Areference is the complement of an instance: it is the original entity from which the instance is
sourced.

5/10

While the term reference is applicable to the source of any instance, it typically only comes up with
regards to individually instanced components, such as when a component is instanced from one
asset to another. Referenced components will have tags in the interface that indicate the reference's

version, like i"" LGN ERGRIEH IR B = A M. The references of asset instances do not have

such tags.

Local and inherited entities

E! drogon 001 v 2 ({Instance)
» B bundleLibrary &

cameralibrary &

=~ Inherited

Alocal entity is an entity that has its data and files at the location it appears in.

An inherited entity is an entity that is available at a location, but any files it has are in fact stored at
location higher up in the hierarchy. Inherited entities exist as links, and are created when an entity is
instanced. When an inherited entity is accessed, Jabuka will point to the files in the original entity
higher up in the hierarchy.

For example, if an asset at...

GT8/assets/character/drogon

... isinstanced to...

GT8/801/801-1030/assets/character/drogon

... all of the instanced asset's components will be links to their originals, and no actual component
data will be copied (unless made local; see below).

Localizing

6/10

swordShinobi v 1 (instance)
bundleLibrary g

Gk}

lookDev w1 &3

Make Local Entity (unlock)
Utils

rigging_AnimationGeo v 0 &
E

rigging_AnimationRig w1

texture v1 =

An inherited entity can be localized or made local, which unlinks it from its reference and actually
copies its content over. Just like a regular copy, once an entity is made local, it can be changed
without affecting the original.

Bundle

=

Abundle is a container for all the input or output content for one task in the pipeline. A task here
could be an entire department's output for a shot or asset, or a sub-task within a department.
Fundamentally, a bundle is a simply a tracked list entity versions, which, like other entities, can be
updated and has versions of its own.

Departments use bundles to pass work to each other, and they are fundamental to Image Engine's
pipeline. You can think about the Out bundle as an iteration of the total output of a task in the
pipeline. The use of bundles for department sub-tasks allows us to have multiple artists from the
same department each working on a task on the shot or asset at the same time.If at every step of the
process we make sure to include the correct data in our bundles, then no department will ever be
missing the content they need.

There are two types of bundles:
* & Inbundle

* g Out bundle

An In bundle lists all the approved entity versions from the previous departments that are safe for
use, and informs the artist of what is available to use in their task. The artist then works with this
data, and in turn generates outputs, which they publish into an Out bundle, to be used by an artist in
a downstream task.

7/10

Bundle render

drogon : assets out v135

The slate frame of the bundle render based on the 135th version %7

of Drogon's assets_out bundle. Notice the breakdown of changes
described by the burn-in.

A bundle render is a render made using the entities from a version of a bundle. Since a bundle
represents the output of a pipeline task, a bundle render offers a guaranteed look at the output of
that task. During review and QC, a lead or sup will use the bundle render as a daily, and approve its
bundle if it passes. By approving the bundle, they automatically approve all of the task's component
versions inside that bundle.

Approving bundles

Description Version Approved

» @B latest drone rig, set damage state to A

[2 . removed guns changing position

P> .‘ simplified trajectory. removed gun anim, finished the gun anim f rom 1740.

To approve a bundle means that a lead or sup QC'd a bundle render, and marked the bundle's
contents for use in the pipeline. Keep in mind that approved does not mean final, but that other
departments can use it. Once a bundle is approved, all of the entities it contains become
automatically approved as well, and downstream department(s) can use those entities. An approved
Out bundle is, in effect, a collection of entities that are guaranteed to work together.

Since an approved bundle is a list of entities guaranteed to work together, its corresponding bundle
render offers a guaranteed snapshot of those entities. With both the bundle and its bundle render
tracked and linked in Jabuka, we can maintain a full history of the changes we make, and recreate
any bundle render we have generated on an active show.

Advanced terms

Sub-bundle

8/10

FX¥ 5UB BUNDLES

Sub-bundles for the FX department used on BLD. =2

A sub-bundle is an Out bundle for a sub-stage inside a department's workflow, used to help isolate
work on different components and account for more granular pipelines. With them, multiple artists
from the same department can track and work on different elements of a shot at the same time.

The most common examples of sub-bundles are in FX's workflows on FX-heavy shows. So that the
individual FX elements on a shot can be separately cached, QC'd, and tracked in Shotgun, typically
there is one Out bundle per element. For example: fx_glass_out, fx_smoke_out, fx_saliva_out. Each
are fed by fx_in, but the separate artists working on those elements publish to each. Then, the sub-
bundles feed into the main fx_out bundle for the pass-off of the summed state of all FX elements to
downstream departments.

Input bundle

An input bundle in the asset workflow template. &

An input bundle is a bundle from which another bundle copies a list of entities. As a basic example,
say that bundle Ais an input bundle of bundle B. If A's entity listis 1,2,3 ,and B'slistis 4,5,6 ,
then the next time B updates, its list will become 1,2,3,4,5,6 .

In practice in our workflow templates, the most common input bundles are department Out bundles
connected to downstream In bundles through inputBundles plugs. For example, modelling_outis an
input bundle for texturing_in. Here, modeling_out adds its list of entities to texturing_in, resulting in
both lists containing the asset's model cache.

Source bundle

9/10

Source bundles in the asset workflow template. &

A source bundle is a bundle from which another bundle references its list of entities. This reference
can be thought of like a scene reference in 3D tools like Maya. The primary purpose of a source
bundle is so that a bundle can dynamically load another bundle's list of entities at a moment in time
without modifying its own list. In the database, source bundles are just like source entities, and are
defined ina bundle's source property.

In practice in our workflow templates, the most common source bundles are department In bundles
connected to their Out bundles through Sources plugs. For example, texturing_in is a source bundle
for texturing_out. During a process like a bundle render, texturing_out will reference texturing_in's
entities, meaning it will read its components, but texturing_out's own list of entities will not change.

See also

e Jabuka

e Bundle Basics 1: Bundle Pipeline

Categories: Jabuka | Pipeline

10/10

